

Rayat Shikshan Sanstha''s

Karmaveer Bhaurao Patil College Vashi, Navi Mumbai

Empowered Autonomous College

[University of Mumbai]

Syllabus

Sr. No.	Heading	Particulars
1	Title of Course	M.Sc. Information Technology
2	Eligibility for Admission	Degree with 12 th Math
3	Passing Marks	40%
4	Ordinances/Regulation s (if any)	
5	No. of Years/Semesters	04 Semester /One Semester
6	Level	P.G.
7	Pattern	Semester
8	Status	New
9	To be implemented from Academic year	2023-2024

Preamble of the Syllabus:

The subject of Information Technology is one of the important application tools which can be applied to different areas in teaching, training and learning which is considered to be important in terms of human resource development, Information Processing and Decision Making which enhances the development of a Nation.

Information Technology as an application science is studied to be applied for other areas, right from Mathematics to other basic sciences, applied sciences, social sciences and each and every aspect of human life.

The main aim of the course is to focus on the technological tools and concepts available and how they can be applied to the developmental processes

The various concepts include Embedded System, Information Security Management, Virtualization, Ethical Hacking, Artificial Intelligence, IT Infrastructure Management, Computer Forensics, Cloud Management, Project and so on..

Information Technology Experts are very much required right from academic institutions, Research and Development to Industries both Public and Private Sectors. The two year programme of M.Sc. (Information Technology) is prescribed according to the credit system of University of Mumbai from the academic year 2020-21. The course has been divided into four semesters. The programme has a total 16 theory papers, and four in each semester.

The programme is designed to provide students a focused elaborate training in Information Technology concepts and tools as well as exposing them to the advanced fields. In addition to theoretical knowledge, significant emphasis has been given to provide hands-on experience to the students in the frontier areas of Information Technology. A multidisciplinary approach has been employed to provide best leverage to students to enable.

Syllabus for M.Sc. Part-1 Information Technology

Objectives of the Course:

A few years after graduation, students with a M.Sc in Information Technology will be able to::

- Prepare highly qualified specialists for the IT industry in the field of information technology.
- Develop interpersonal skills, teamwork skills, leadership skills, and project management skills.
- Learn how to operate a professional IT practice
- Study a broad context of advanced contemporary IT issues

Course Outcome:

By the end of the course, a student should develop the ability:

Upon graduation, students with a M.Sc in Information Technology will be able to:

- Students will develop the ability to use IT skills in decision making, by analyzing problems, developing solutions and explaining findings.
- Students can recognize ethical and professional responsibilities in IT.
- Students can design an IT solution using best practices and standard methodologies in the field.
- Students can easily implement, and test an IT solution, and evaluate its effectiveness.
- Studentss can use and apply current technical concepts and practices in the core information technologies of networking, data management, software engineering, computer security.
- Student can demonstrate a deep understanding of the IT methodologies and frameworks used to solve complex computing problems related to at least one IT Body-of-Knowledge
- Students will build the ability to identify and analyze user needs and take them into account in the selection, creation, evaluation and administration of computer-based systems.
- Students can effectively integrate IT-based solutions into the user environment.
- Students will develop and implement optimal solutions to complex computing problems using industry-recognized best practices and standards.
- Students can apply ethical decision making in the development, implementation, and management of IT systems.

Scheme of examination for Each Semester:

Continuous Internal Evaluation: 40 Marks (40 Marks for- Assignment, Projects, Open book test, Presentation, Seminar/Workshop, Research Paper Writing, NPTEL/ Swayam Online Courses, Teaching Assistance, Social Responsibility Activity etc.)

Semester End Examination: 60 Marks will be as follows -

	Theory: The	e Semester End Examination for theory course work v	will be conducted as per								
	the following scheme.										
	Each theory	Each theory paper shall be of two and half hour duration.									
I	All questions	s are compulsory and will have internal options.									
1	$\overline{Q-I}$	From Unit – I (having internal options.) 12 M									
	Q - II	From Unit – II (having internal options.) 12 M									
	Q - III	From Unit – III (having internal options.) 12 M									
	Q - IV	IV From Unit – IV (having internal options.) 12 M									
	Q - V	From Unit – V (having internal options.) 12 M									
II.	PracticalThe Semester End Examination for practical coursework will be conducted as per the following scheme.										
Sr. No.	Particulars	of Semester End Practical Examination	Marks%								
1	Laboratory	Work	40								
2	Journal		05								
3	Viva 05										
	TOTAL		50								

Semester – I								
Course Code	Course Title	Credits						
IT401	Cloud Computing	4						
IT402	Ethical Hacking	3						
IT403	Big Data Analytics	3						
Elective								
PGIT404A	Image Processing							
PGIT404B	OR							
PGI1404B	Soft Computing Techniques	3						
IT405	Research Methodology	3						
IT401	Cloud Computing Practical	2						
IT402	Ethical Hacking Practical	1						
IT403	Big Data Analytics Practical	1						
Elective								
IT404A	Image Processing Practical	1						
	OR							
IT404B (Elective)	Soft Computing Techniques Practical	1						
IT405	Research Methodology Practical	1						
	Total Credits	22						

Semester – II							
Course Code	Course Title	Credits					
IT451	Data Science	4					
IT452	Applied Artificial Intelligence	3					
IT453	Microservices Architecture	3					
Elective							
IT454A IT455B	Computer Forensic OR Computer Vision	3					
IT451	Data Science Practical	2					
IT452	Applied Artificial Intelligence Practical	1					
IT453	Microservices Architecture Practical	1					
Elective							
IT454A	Computer Forensic Practical	1					
IT454B (Elective)	OR Computer Vision Practical						
IT455	Internship	4					
	Total Credits	22					

Rayat Shikshan Sanstha's KARMAVEER BHAURAO PATIL COLLEGE, VASHI. NAVI MUMBAI (Autonomous) Department of Information Technology M. Sc. Information Technology Program Outcomes (POs)

Learners are able to-

	1	
PO-1	Disciplinary Knowledge and Skills	Acquire the comprehensive and in-depth knowledge of various subjects in sciences such as Physics, Chemistry, Mathematics, Microbiology, Bio-analytical Science, Computer Science, Data Science, Information Technology and disciplinary skills and ability to apply these skills in the field of science, technology and its allied branches
PO-2	Communication and Presentation Skills	Develop various communication skills including presentation to express ideas evidentl y to achieve common goals of the organization.
PO-3	Creativity and Critical Judgment	Facilitate solutions to current issues based on investigations, evaluation and justification using evidence based approach.
PO-4	Analytical Reasoning and Problem Solving	Build critical and analytical attitude in handling the problems and situations.
PO-5	Sense of Inquiry	Curiously raise relevant questions based on highly developed ideas, scientific theories and its applications including research.
PO-6	Use of Digital Technologies	Use various digital technologies to explore information/data for business, scientific research and related purposes.
PO-7	Research Skills	Construct, collect, investigate, evaluate and interpret information/data relevant to science and technology to adapt, evolve and shape the future.
PO-8	Application of Knowledge	Develop a scientific outlook to create consciousness against the social myths and blind faith. VIR
PO-9	Moral and Ethical Reasoning	Imbibe ethical, moral and social values to develop virtues such as justice, generosity and charity as beneficial to individuals and society at large.
PO-10	Leadership and Teamwork	Work cooperatively and lead proactively to achieve the goals of the organization by implementing the plans and projects in various field-based situations related to science, technology and society at large.
PO-11	Environment and Sustainability	Create social awareness about the environment and develop sustainability for betterment of the future.

PO-12	Lifelong Learning	Realize that pursuit of knowledge is a lifelong activity and in
		combination with determined efforts, positive attitude and other
		qualities to lead a successful life.

	Department of Information Technology Program Specific Outcomes(PSO)
PSO-1	Prepare highly qualified specialists for the IT industry in the field of information technology.
PSO-2	Develop interpersonal skills, teamwork skills, leadership skills, and project management skills.
PSO-3	Learn how to operate a professional IT practice.
PSO-4	Study a broad context of advanced contemporary IT issues.

SEMESTER I

			М	I.Sc Inf Cours		de: IT4	01		9			
Periods pe is 60 minu		(1 perio	ods	No. of	Credits	5		Eva	luatio	n Systen	n	
	04					04				H-60 M NT-40 N		
differe CO2: Progra CO3: design CO4:. compu CO5:. develo <u>ICT 7</u> <u>Stude</u> (Exper <u>Links</u>	Analyz ent archi Design Apply schedu Create ting clo Assess op cloud Fools U ents Cer imental, SWA <u>https://u</u> beginne	e the C tectures differ model. and des ling alg combin ouds. cloud applica sed: V ntric N Particip YAM onlineco www.ude ers/	er succe Cloud co s. ent wo sign sui corithms atorial a Storage ation. /ideos,	ssful co omputir rkflows table V auctions e system PPT, P <u>s:</u> Prob oblem S <u>OCS</u> : tel.ac.in/ /course/ g/learn/in	ng setup accord irtualiz s for clo ns and en-Tat lem Solving) /noc21_c introduct	on of thi o with ding to ation co oud reso Cloud olet, Vi ving and cs14/pre- tion-to-cle	s course its vuln requir oncept, urces an security sual Stu Particip <u>view</u> loud-cor	e, stude herabilit rements Cloud nd desig n, the ri udio, J ative	ies and and a Resour gn schee sks inv VM, JI	l applica apply m ce Man duling al	ations us ap redu agement lgorithm its impa beans	ce t and s for
		1	<u>T</u>	<u>'he CC</u>	<u>)-PO N</u>	<u>Mappi</u>	ng Ma	<u>itrix</u>				
CO\P O	P 0 1	P 0 2	P 0 3	P 0 4	P O 5	P 0 6	Р О 7	P O 8	P O 9	PO 10	PO 11	P 01 2
CO1	-	-	-	-	-	-	-	3	-	-	-	-
CO2	-	-	2	-	-	-	-	2	-	-	-	-
	-	-	2	-	-	-	2	2	-	-	-	-
CO3		-	2	-	2	-	-	-	-	-	-	-
CO3 CO4	-											

Unit	Details	Lectures
I	 Introduction to Cloud Computing: Introduction, Historical developments, BuildingCloudComputingEnvironments, Principles Of Parallel and Distributed Computing:Era of Computing, Parallelv/s distributed computing, Elements of Parallel Computing, Elements of distributed computing, Technologies for distributed computing. Virtualization: Introduction, Characteristics of virtualized environments, Taxonomy of virtualization techniques, Virtualization and cloud computing, Pros and cons of virtualization, Technology examples.LogicalNetworkPerimeter,VirtualServer,CloudStorage Device, Cloud usage monitor, Resource replication, Ready-made environment. 	12
Ш	 Cloud Computing Architecture: Introduction, Fundamental concepts and models, Roles and boundaries, Cloud Characteristics, Cloud Delivery models, Cloud Deployment models, Economics of the cloud, Open challenges. Fundamental Cloud Security: Basics, Threat agents, Cloud security threats, additional considerations. Industrial Platforms and New Developments: Amazon Web Services, Google App Engine, Microsoft Azure. 	12
Ш	Specialized Cloud Mechanisms: Automated Scaling listener, Load Balancer, SLA monitor, Pay-per-use monitor, Audit monitor, failover system, Hypervisor, Resource Centre, Multi Device broker, State Management Database. Cloud Management Mechanisms: Remote administration system, Resource Management System, SLA Management System, Billing Management System, Cloud Security Mechanisms: Encryption, Hashing, Digital Signature, Public Key Infrastructure (PKI), Identity and Access Management (IAM), Single Sign-On (SSO), Cloud-Based Security Groups, Hardened Virtual Server Images	12
IV	Fundamental Cloud Architectures: Workload Distribution Architecture, Resource Pooling Architecture, Dynamic Scalability Architecture, Elastic Resource Capacity Architecture, Service Load Balancing Architecture, Cloud Bursting Architecture, Elastic Disk Provisioning Architecture, Redundant StorageArchitecture. Advanced Cloud Architectures: Hypervisor Clustering Architecture, Load Balanced Virtual Server Instances Architecture, Non-Disruptive Service Relocation Architecture, Zero Downtime Architecture, Cloud Balancing Architecture, Resource Reservation Architecture, Dynamic Failure Detection and Recovery Architecture, Bare-MetalProvisioning Architecture, Rapid Provisioning Architecture, StorageWorkload ManagementArchitecture	12
V	Cloud Delivery Model Considerations: Cloud Delivery Models: The Cloud Provider Perspective, Cloud Delivery Models: The Cloud Consumer Perspective, Cost Metrics and Pricing Models: Business Cost Metrics, Cloud Usage Cost Metrics, Cost Management Considerations, Service Quality Metrics and SLAs: Service Quality Metrics, SLA Guidelines	12

Reference Books:

1. Mastering Cloud Computing Foundations and ApplicationsProgramming, RajkumarBuyya, Christian Vecchiola, S.ThamaraiSelvi, 2013

2. Cloud Computing Concepts, Technology & Architecture, Thomas Erl, ZaighamMahmood, and Ricardo Puttini, 2013

3. Distributed and Cloud Computing, FromParallel Processing to the Internet of Things, Kai Hwang, Jack Dongarra, Geoffrey Fox, 2012

E-Books and Online Learning Material :

https://onlinecourses.nptel.ac.in/noc21_cs14/preview
 https://www.udemy.com/course/introduction-to-cloud-computing-on-amazon-aws-for-beginners/
 https://www.coursera.org/learn/introduction-to-cloud

M.Sc Information Technology Course Code: IT401 Course Name: Cloud Computing Practical

Practical per week(1 periods is 60 minutes)	No. of Credits	Evaluation System
04	02	PR-50 Marks
List of Prosticals		

List of Practicals

1. Write a program for implementing a Client Server communication model using TCP.

- A) A client server based program using TCP to find if the number entered is prime.
- B) A client server TCP based chatting application.

2. Write a program for implementing a Client Server communication model using UDP.

- A) A client server based program using UDP to find if the number entered is even or odd.
- B) A client server based program using UDP to find the factorial of the entered number.
- C) A program to implement simple calculator operations like addition, subtraction, multiplication and division.
- D) A program that finds the square, square root, cube and cube root of the entered number.

3.

A) A multicast Socket example.

4. Write a program to show the object communication using RMI.

- A) A RMI based application program to display current date and time.
- B) A RMI based application program that converts digits to words, e.g. 123 will be converted to one two three.

5. Show the implementation of web services.

A) Implementing "Big" Web Service.

B) Implementing Web Service that connects to MySQL database.

- 6. Implement Xen virtualization and manage with XenCenter
- 7. Implement virtualization using VMWareESXi Server and managing withvCenter
- 8. Implement Windows Hyper V virtualization
- 9. Develop application for Microsoft Azure.
- 10. Develop application for Google App Engine

						Code: 1	Fechnol IT402 Ethical					
Periods p 60 minut		k(1 pe	riods is	N	o. of C	redits			Eva	luation S	System	
	,	04					03				-60 Marl '-40 Marl	
CO2: count CO3: CO4: CO5: ICT 7 Stude (Exper Links 1. htt scr	: Identif : Recog ermeasu : Determ : Descri : Identif Fools U ents Ce imental, : SWA ps://www :atch/	y foot nize the ures hine the be the y tools Jsed: Partici YAM w.udem	ter succ printing e charac e techni charact	essful o g techni cteristic ques an eristics chnique , PPT, <u>ds:</u> Pro Problem <u>OCS</u> : purse/lea	iques an es of the of troja es used Pen-T oblem So Solving arn-ethic	tion of nd tools e enume s used i ans, wo to evad ablet olving a g) cal-hacki	this cou eration n system orms, and le IDS, - nd Partion ing-from entials-e	phase o n hacki d malw firewal cipative 	f an att ng. are ls, and i	vill be ab	ffective	
			1	<u>The</u>	<u>CO-I</u>	<u>PO Ma</u>	apping	<u>g Matı</u>		1		1
CO\P O	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO11	PO12
CO1	2	-	-	-	-	-	-	-	-	-	-	-
CO2	1	-	2	-	-	-	-	-	-	-	-	-
CO3	2	-	-	-	-	-	-	-	2	-	-	-
CO4	1	-	-	-	-	-	-	1	-	-	-	-
CO5	-	-	2	-	-	-	-	-	-	-	-	
U Unit-I	nit		duction		Ethi		Hackin	0	ootprin	ting a	nd	ectures
Reconnaissance, Scanning Networks, Enumeration Unit-II System Hacking, Trojans and Backdoors, Viruses and Worms, Sniffing								12				

Social Engineering, Denial of Service, Session Hijacking,

Hacking Web Servers

12

Unit-III

Unit-IV	Hacking Web Applications, SQL Injection, Hacking Wireless	12
	Networks, Hacking Mobile Platforms	
Unit-V	Evading IDS, Firewalls and Honeypots, Buffer Overflows,	12
	Cryptography, Penetration Testing	

Reference Books:

1. Ethical Hacking Review Guide, Kimberly Graves

2. Ethical Hacking, AnkitFadia, 2nd Edition, 2006

3. Insider Computer Fraud, Kenneth C.Brancik, 2008

E-Books and Online Learning Material :

- 1) <u>https://www.udemy.com/course/learn-ethical-hacking-from-scratch/</u>
- 2) https://www.coursera.org/learn/ethical-hacking-essentials-ehe

	Cou	M.Sc Information Tech Course Code: IT4 rse Name: Ethical Hack	02			
	tical per week(1 periods is inutes)	No. of Credits	Evaluation System			
	02	01	PR-50 Marks			
List o	of Practicals					
1.	Using the tools for whois, t	raceroute, email tracking,	, google hacking.			
2.	Using the tools for scannin dialing countermeasures, Sa	SL Proxy, Censorship circ	cumvention.			
3.	Using NETBIOS Enumerat LINUX/UNIX.enumeration analyzing and enumeration	n tools, NTP Enumeration				
4.	Using System Hacking tool	ls.				
5.	Study of backdoors and Tro	ojan tools				
6.	Study of sniffing tools					
7.	Study of Denial of Service	attack tools				
8.	Study of Hijacking tools					
9.	Study of web server attack	tools.				
10.	0. Study of SQL injection and Web server tools					
11.	Study of wireless hacking t	ools				
12.	Using a cryptanalysis tool.					
12	Study of different security	to alla				

					c Infor Course se Nam	e Code:	IT403					
Periods 1	•	k(1 per	riods	No. o	of Credi	its		E	valuati	ion Syst	em	
is 60 mir	,)4				03				TH-60 INT-40		
CO-: intell CO-: Redu CO-: tools CO-: recor <u>ICT</u> <u>Stuc</u> (Exp <u>Linl</u> 1. <u>h</u> 2. <u>h</u>	1: Unde ligent b 2: Acquince and 3: Inter for big 4: Achin mmende Tools lents C erimenta <u>xs: SW</u> <u>attps://wn</u>	erstand usiness uire fund NO SQ pret bu data ar ieve ad er syste Used: Centric al, Partic AYAM ulinecour	fter succ the key and scie damenta DL in big usiness r nalytics. equate p ms, soci Videos Metho cipative, <u>M / MO</u> rses.nptel sera.org/s ny.com/c	cessful issues i entific o il enabl g data a nodels perspec al med perspec al med perspec bi	n big da computi ing tech nalytics and sci ctives of ia applie Pen-Tal oblem So n Solving <u>oc20_cs</u>	tion of t ata man ng. iniques dentific f big da cations blet, R s olving an g) <u>92/previa</u> <u>g-data</u>	his couragement and sca comput ata anal etc studio,h nd Partic	rse, stud t and it lable al ting par lytics in adoop	s associ gorithm radigms	iated app ns like H s, and a	le to: plication [adoop,] pply sof cations	Map Ttware
CO\ PO	P O	P O	P O 2	P O	P O	P O	P O 7	P O	P O	PO 10	PO 11	P Ol
CO1	1 2	2	3	4	5	6	7	8	<u>9</u> -	_	_	2
CO2	3	-	-	-	2	-	-	3	-	-	-	-
	-	-	2	-	3	-	-	-	-	-	-	-
CO3					1	1	1	1				

Unit	Details	Lectures

I	Introduction to Big Data, Characteristics of Data, and Big Data Evolution of Big Data, Definition of Big Data, Challenges with big data, Why Big data? Data Warehouse environment, Traditional Business Intelligence versus Big Data. State of Practice in Analytics, Key roles for New Big Data Ecosystems, Examples of Big Data Analytics. Big Data Analytics, Introduction to big data analytics, Classification of Analytics, Challenges of Big Data, Importance of Big Data, Big Data Technologies, Data Science, Responsibilities, Soft state eventual consistency. Data Analytics LifeCycle	12
Π	Analytical Theory and Methods: Clustering and Associated Algorithms, Association Rules, Apriori Algorithm, Candidate Rules, Applications of Association Rules, Validation and Testing, Diagnostics, Regression, Linear Regression, Logistic Regression, Additional Regression Models.	12

Analytical Theory and Methods: Classification, Decision Trees, I	Naïve
Bayes, Diagnostics of Classifiers, Additional Classification Met	
Time Series Analysis, Box Jenkins methodology, ARIMA Mode	10
III Additional methods. Text Analysis, Steps, Text Analysis Examp	
Collecting Raw Text, Representing Text, Term Frequency-Inver	
Document Frequency (TFIDF), Categorizing Documents by Top	
Determining Sentiments	
 Data Product, Building Data Products at Scale with Hadoop, Science Pipeline and Hadoop Ecosystem, Operating System f Data, Concepts, Hadoop Architecture, Working with Distribu system, Working with Distributed Computation Framework for and Hadoop Streaming, Hadoop Streaming, Map Reduce with F Advanced Map Reduce. In-Memory Computing with Spark, Spa Basics, Interactive Spark with PySpark, Writing Spark Application 	for Big 12 ited file Python Python, ark
 Distributed Analysis and Patterns, Computing with Keys, Patterns, Last-Mile Analytics, Data Mining and Warehousing, S Data Queries with Hive, HBase, Data Ingestion, Importing Relational data with Sqoop, Ingesting stream data with flume. A with higher level APIs, Pig, Spark"s higher level APIs. 	Structured 12
Reference Books:	
1. Big Data and Analytics, Subhashini ChellappanSeema Acharya	
 Data Analytics with Hadoop: An Introduction for Data Scientists, Benjam and Jenny Kim, 2016 Big Data and Hadoop, V.K Jain, 2018 	in Bengfort
E-Books and Online Learning Material :	
1) https://onlinecourses.nptel.ac.in/noc20_cs92/preview	
2) https://www.coursera.org/specializations/big-data	
3) <u>https://www.udemy.com/course/big-data-and-hadoop-</u>	

Cour	M.Sc Information Techn Course Code: IT40 se Name: Big Data Analy	3
Practical per week(1 periods is 60 minutes)	No. of Credits	Evaluation System
02	01	PR-50 Marks
List of Practicals		
1)Install, configure and run H	1 1	
2) Implement word count / free		-
3) Implement a MapReduce p	•	
4) Implement an application t / Python	hat stores big data in Hbas	e / MongoDB and manipulate it using R
5) Implement the program in	practical 4 using Pig.	
6) Configure the Hive and im	plement the application in	Hive.
7) Write a program to illustrat	te the working of Jaql.	
8) Implement the following:		
a) Implement Decision tree cl	assification techniques	
b) Implement SVM classifica	tion techniques	
9)Solve the following:		
a) REGRESSION MODEL In	mport data from web storag	ge. Name the dataset and now do
Logistic Regression to fir	nd out relation between var	riables that are affecting the
admission of a student in	an institute based on his or	her GRE score, GPA obtained and
rank of the student. Also	check if the model is fit or	not. require (foreign),
require(MASS).		
b)MULTIPLE REGRESSIO	N MODEL Apply multiple	regressions, if data have a
continuous independent v	variable. Apply on the above	ve dataset.
10) Solve the Following:		
a) CLASSIFICATION MOD	EL	
a. Install relevant package	es for classification.	
b. Choose a classifier for	a classification problem.	
c. Evaluate the performan	nce of the classifier.	
b) CLUSTERING MODEL		
	or unsupervised classificat	ion.
b. Plot the cluster data us	ing R visualizations.	

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				Μ		Cod	on Tech e: IT40 e: Imag	4A	Course	9			
TH-60 Marks INT-40 Marks IT404A Image Processing Course Outcomes: After successful completion of this course, students will be able to: CO1: Understand the relevant aspects of digital image representation and their practical implications. CO2: Understand 2-D convolution, the 2-D DFT, and have the ability to design systems using these concepts CO3: Have the ability to design point wise intensity transformations to meet stated specifications. CO4: Understand the role of alternative color spaces, and the design requirements leading to choices of color space. CO5: Appreciate the utility of wavelet decompositions and their role in image processing systems ICT Tools Used: Videos, PPT. Students Centric Methods: Problem Solving and Participative (Experimental, Participative, Problem Solving) Intes: SWAYAM / MOOCS: 1 https://www.coursera.org/learn/introduction-image-processing 3 https://www.coursena.org/learn/introduction-image-processing The CO-PO Mapping Matrix CO(P P <th>-</th> <th></th> <th>(1 period</th> <th>ls</th> <th>No. of</th> <th>Credits</th> <th>5</th> <th></th> <th>Eva</th> <th>aluatio</th> <th>n Systen</th> <th>n</th> <th></th>	-		(1 period	ls	No. of	Credits	5		Eva	aluatio	n Systen	n	
Course Outcomes: After successful completion of this course, students will be able to: CO1: Understand the relevant aspects of digital image representation and their practical implications. CO2: Understand 2-D convolution, the 2-D DFT, and have the ability to design systems using these concepts CO3: Have the ability to design point wise intensity transformations to meet stated specifications. CO4: Understand the role of alternative color spaces, and the design requirements leading to choices of color space. CO5: Appreciate the utility of wavelet decompositions and their role in image processing systems ICT Tools Used: Videos, PPT. Students Centric Methods: Problem Solving and Participative (Experimental, Participative, Problem Solving) Links: SWAYAM / MOOCS: 1 https://www.edemy.com/course/digital-image-processing-from-ground-up-in-python/ . The CO-PO Mapping Matrix COVP P P P P P PO		/					03						
Course Outcomes: After successful completion of this course, students will be able to: CO1: Understand the relevant aspects of digital image representation and their practical implications. CO2: Understand 2-D convolution, the 2-D DFT, and have the ability to design systems using these concepts CO3: Have the ability to design point wise intensity transformations to meet stated specifications. CO4: Understand the role of alternative color spaces, and the design requirements leading to choices of color space. CO5: Appreciate the utility of wavelet decompositions and their role in image processing systems ICT Tools Used: Videos, PPT. Students Centric Methods: Problem Solving and Participative (Experimental, Participative, Problem Solving) Links: SWAYAM / MOOCS: 1 https://www.edemy.com/course/digital-image-processing-from-ground-up-in-python/ . The CO-PO Mapping Matrix COVP P P P P P PO				IT ²	404A I	mage	Proce	ssing					
implications. CO2: Understand 2-D convolution, the 2-D DFT, and have the ability to design systems using these concepts CO3: Have the ability to design point wise intensity transformations to meet stated specifications. CO4: Understand the role of alternative color spaces, and the design requirements leading to choices of color space. CO5: Appreciate the utility of wavelet decompositions and their role in image processing systems ICT Tools Used: Videos, PPT. Students Centric Methods: Problem Solving and Participative (Experimental, Participative, Problem Solving) Links: SWAYAM / MOOCS: https://www.udemy.com/course/digital-image-processing-from-ground-up-in-python/ https://www.cuersera.org/learn/introduction-image-processing https://onlinecourses.nptel.ac.in/noc19_ee55/preview CO1 2 2 CO1 2 2 2 2 3 4 5 6 7 8 9 P	Course C	outcom	es: After			0		0	e, stude	nts will	l be able	e to:	
implications. CO2: Understand 2-D convolution, the 2-D DFT, and have the ability to design systems using these concepts CO3: Have the ability to design point wise intensity transformations to meet stated specifications. CO4: Understand the role of alternative color spaces, and the design requirements leading to choices of color space. CO5: Appreciate the utility of wavelet decompositions and their role in image processing systems ICT Tools Used: Videos, PPT. Students Centric Methods: Problem Solving and Participative (Experimental, Participative, Problem Solving) Links: SWAYAM / MOOCS: https://www.udemy.com/course/digital-image-processing-from-ground-up-in-python/ https://www.udemy.com/course/digital-image-processing https://onlinecourses.nptel.ac.in/noc19_ec55/preview CO1 2 2 CO1 2 2 2 2 3 4 5 6 7 8 9 P <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						-							
these concepts CO3: Have the ability to design point wise intensity transformations to meet stated specifications. CO4: Understand the role of alternative color spaces, and the design requirements leading to choices of color space. CO5: Appreciate the utility of wavelet decompositions and their role in image processing systems ICT Tools Used: Videos, PPT. Students Centric Methods: Problem Solving and Participative (Experimental, Participative, Problem Solving) Links: SWAYAM/MOOCS: 1. https://www.udemy.com/course/digital-image-processing-from-ground-up-in- python/ 2. https://www.coursera.org/leam/introduction-image-processing 3. https://onlinecourses.nptel.ac.in/noc19_ee55/preview COVP P P P P P P P P P P P P P P P P P P					1		-	- 1					
CO3: Have the ability to design point wise intensity transformations to meet stated specifications. CO4: Understand the role of alternative color spaces, and the design requirements leading to choices of color space. CO5: Appreciate the utility of wavelet decompositions and their role in image processing systems ICT Tools Used: Videos, PPT. Students Centric Methods: Problem Solving and Participative (Experimental, Participative, Problem Solving) Links: SWAYAM / MOOCS: 1. https://www.udemy.com/course/digital-image-processing-from-ground-up-in-python/ 2. https://www.coursera.org/learn/introduction-image-processing 3. https://onlinecourses.nptel.ac.in/noc19_ee55/preview CO(P P	CO2 :	Unders	stand 2-I) conv	olution,	the 2-D	DFT,	and hav	e the ab	oility to	design s	systems	using
specifications. CO4: Understand the role of alternative color spaces, and the design requirements leading to choices of color space. CO5: Appreciate the utility of wavelet decompositions and their role in image processing systems ICT Tools Used: Videos, PPT. Students Centric Methods: Problem Solving and Participative (Experimental, Participative, Problem Solving) Links: SWAYAM / MOOCS: 1. https://www.udemy.com/course/digital-image-processing-from-ground-up-in-python/ 2. https://onlinecourses.nptel.ac.in/noc19 ee55/preview The CO-PO Mapping Matrix CO(P P P P P P P P P CO(P P <td></td> <td>1</td> <td></td>		1											
CO4: Understand the role of alternative color spaces, and the design requirements leading to choices of color space. CO5: Appreciate the utility of wavelet decompositions and their role in image processing systems ICT Tools Used: Videos, PPT. Students Centric Methods: Problem Solving and Participative (Experimental, Participative, Problem Solving) Links: SWAYAM / MOOCS: 1. https://www.udemy.com/course/digital-image-processing-from-ground-up-in-python/ 2. https://onlinecourses.nptel.ac.in/noc19_ee55/preview The CO-PO Mapping Matrix CO\P P				y to des	sign poi	nt wise	intensit	y transf	formatio	ons to n	neet state	ed	
choices of color space. CO5: Appreciate the utility of wavelet decompositions and their role in image processing systems ICT Tools Used: Videos, PPT. Students Centric Methods: Problem Solving and Participative (Experimental, Participative, Problem Solving) Links: SWAYAM / MOOCS: 1. https://www.udemy.com/course/digital-image-processing-from-ground-up-in- python/ 2. https://www.coursera.org/learn/introduction-image-processing 3. https://onlinecourses.nptel.ac.in/noc19_ee55/preview The CO-PO Mapping Matrix CO\P P P P P P P P P P P P P P P P P P P	1						_						
CO5: Appreciate the utility of wavelet decompositions and their role in image processing systems ICT Tools Used: Videos, PPT. Students Centric Methods: Problem Solving and Participative (Experimental, Participative, Problem Solving) Links: SWAYAM / MOOCS: 1. https://www.udemy.com/course/digital-image-processing-from-ground-up-in-python/ 2. https://www.coursera.org/learn/introduction-image-processing The CO-PO Mapping Matrix CO\P O D D </td <td></td> <td></td> <td></td> <td></td> <td>falterna</td> <td>tive co</td> <td>lor spac</td> <td>es, and</td> <td>the desi</td> <td>ign requ</td> <td>uirement</td> <td>ts leadin</td> <td>g to</td>					falterna	tive co	lor spac	es, and	the desi	ign requ	uirement	ts leadin	g to
systems ICT Tools Used: Videos, PPT. Students Centric Methods: Problem Solving and Participative (Experimental, Participative, Problem Solving) Links: SWAYAM / MOOCS: 1. https://www.udemy.com/course/digital-image-processing-from-ground-up-in- python/ 2. https://www.coursera.org/learn/introduction-image-processing The CO-PO Mapping Matrix CO\P P<					C	1 / 1	•		1.4 .	1 · ·			
ICT Tools Used: Videos, PPT.Students Centric Methods: Problem Solving and Participative (Experimental, Participative, Problem Solving)Links: SWAYAM / MOOCS:1.https://www.udemy.com/course/digital-image-processing-from-ground-up-in- python/2.https://www.udemy.com/course/digital-image-processing3.https://onlinecourses.nptel.ac.in/noc19_ee55/previewThe CO-PO Mapping MatrixCO\PP <td></td> <td></td> <td>ciate the</td> <td>utility</td> <td>of wave</td> <td>let deco</td> <td>omposit</td> <td>ions an</td> <td>d their r</td> <td>ole in i</td> <td>mage pr</td> <td>ocessing</td> <td>5</td>			ciate the	utility	of wave	let deco	omposit	ions an	d their r	ole in i	mage pr	ocessing	5
Students Centric Methods: Problem Solving and Participative (Experimental, Participative, Problem Solving) Links: SWAYAM / MOOCS: 1. https://www.udemy.com/course/digital-image-processing-from-ground-up-in-python/ 2. https://www.coursera.org/learn/introduction-image-processing 3. https://onlinecourses.nptel.ac.in/noc19_ee55/preview The CO-PO Mapping Matrix CO\P <				• 1	DDT								
(Experimental, Participative, Problem Solving) Links: SWAYAM / MOOCS: 1. https://www.udemy.com/course/digital-image-processing-from-ground-up-in-python/ 2. https://www.coursera.org/learn/introduction-image-processing-from-ground-up-in-python/ 3. https://onlinecourses.nptel.ac.in/noc19_ee55/preview The CO-PO Mapping Matrix CO\P <		ools U	sed: V	ideos,	PPT.								
(Experimental, Participative, Problem Solving) Links: SWAYAM / MOOCS: 1. https://www.udemy.com/course/digital-image-processing-from-ground-up-in-python/ 2. https://www.coursera.org/learn/introduction-image-processing-from-ground-up-in-python/ 3. https://onlinecourses.nptel.ac.in/noc19_ee55/preview The CO-PO Mapping Matrix CO\P <	Stude	nts Ce	ntric M	ethod	s: Prob	lem Solv	ving and	Particip	ative				
1. 2. https://www.coursera.org/learn/introduction-image-processing3. https://www.courses.nptel.ac.in/noc19 ee55/previewThe CO-PO Mapping MatrixCO\PP<t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>8</td><td>P</td><td></td><td></td><td></td><td></td><td></td></t<>							8	P					
python/ 2. https://www.coursera.org/learn/introduction-image-processing 3. https://www.coursera.org/learn/introduction-image-processing The CO-PO Mapping Matrix CO\P O O	Links	: SWA	YAM/	MOO	CS:								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1. <u>htt</u>	tps://ww	w.udemy.	.com/co	urse/digi	tal-imag	ge-proces	sing-fro	m-groun	d-up-in-			
3. https://onlinecourses.nptel.ac.in/noc19_ee55/preview The CO-PO Mapping Matrix CO\P O O </td <td></td>													
CO\P O O									g				
CO\P O P O P O P O P O <th< td=""><td>3. <u>htt</u></td><td>tps://onli</td><td>necourse</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	3. <u>htt</u>	tps://onli	necourse										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				<u> </u>	he CO	-PO N		ng Ma	trix				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CO\P	Р	P	Р	Р	Р	Р	Р	Р	Р	РО	PO	Р
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0	0	0	0	0	0	0	0	0	0	10	11	01
CO2 - - 3 - 1 -		1	2	3	4	5	6	7	8	9			2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CO1	2	-		-	-	-	-	-	-	-	-	-
CO3 - - - - 2 -	CO2	-	-	3	-	1	-	-	-	-	-	-	-
CO3 2 - - 2 - - - CO4 2 - - 2 - - - -		_	_	_	_	_	_	2	_		_	_	
	CO3												
CO5 2 1	CO4		-	-	-	2	-	-	-	-	-	-	
	CO5	2	-	-	-]	-		-	-	-	-	-]	1
		1	<u> </u>				1	<u> </u>	1	<u> </u>	1	1	<u> </u>
		n										T	

Details

Lectures

Unit

	Introduction:DigitalImageProcessing,OriginsofDigitalImageProcessing,	
	Applications and Examples of Digital Image Processing, Fundamental	
	Steps in Digital Image Processing, Components of an Image Processing	
Ι	System, Digital Image Fundamentals: Elements of Visual Perception,	
	Light and the Electromagnetic Spectrum, Image Sensing and Acquisition,	
	Image Sampling and Quantization, Basic Relationships Between Pixels,	12
	Basic Mathematical Tools Used in Digital Image Processing, Intensity	

	Transformations and Spatial Filtering: Basics, Basic Intensity	
	Transformation Functions, Basic Intensity Transformation Functions,	
	Histogram Processing, Fundamentals of Spatial Filtering, Smoothing	
	(Lowpass) Spatial Filters, Sharpening (Highpass)SpatialFilters,High	
	Pass,Band Reject,andBandpassFiltersfromLowpass Filters, Combining	
	Spatial Enhancement Methods, UsingFuzzy Techniques for Intensity	
	Transformations and SpatialFiltering	
	Filtering in the Frequency Domain: Background, Preliminary Concepts, Sampling and the Fourier Transform of Sampled Functions,	
	The Discrete Fourier Transform of One Variable, Extensions to	
	Functions of Two Variables, Properties of the 2-D DFT and IDFT, Basics	
	of Filtering in the Frequency Domain, Image Smoothing Using Low Pass	
	Frequency Domain Filters, Image Sharpening Using High Pass Filters,	12
	Selective Filtering, Fast Fourier Transform	
II	Image Restoration and Reconstruction: A Model of the Image	
	Degradation/Restoration Process, Noise Models, Restoration in the Presence of Noise OnlySpatial Filtering, Periodic Noise Reduction	
	Using Frequency Domain Filtering, Linear, Position-Invariant	
	Degradations, Estimating the Degradation Function, Inverse Filtering,	
	Minimum Mean	
	Square Error (Wiener) Filtering, Constrained Least Squares	
	Filtering, Geometric Mean Filter, Image Reconstruction from	
	Projections	
	Wavelet and Other Image Transforms: Preliminaries, Matrix-based	12
	Transforms, Correlation, Basis Functions in the Time-Frequency Plane,	
	BasisImages, Fourier-Related Transforms, Walsh-Hadamard Transforms,	
	Slant Transform, Haar Transform, Wavelet Transforms Color Image Processing: Color Fundamentals, Color Models,	
	Pseudocolor Image Processing, Full-Color Image Processing, Color	
	Transformations, ColorImageSmoothingandSharpening,	
III	UsingColorinImageSegmentation, Noise in Color Images, Color	
	ImageCompression.	
	Image Compression and Watermarking: Fundamentals, Huffman	
	Coding, Golomb Coding, Arithmetic Coding, LZW Coding, Run-length Coding,	
	Symbol-based Coding, 8 Bit-plane Coding, Block	
	TransformCoding, Predictive Coding, Wavelet Coding, Digital	
	ImageWatermarking,	
	Morphological Image Processing: Preliminaries, Erosion and Dilation,	
	Opening and Closing, The Hit-or-Miss Transform, Morphological	
	Algorithms, Morphological Reconstruction, Morphological Operations on Binary Images, Grayscale Morphology	12
	Image Segmentation I: Edge Detection, Thresholding, and Region	14
IV	Detection: Fundamentals, Thresholding, Segmentation by Region	
11	Growing and by Region Splitting and Merging, Region Segmentation	
	Using Clustering and Superpixels, Region Segmentation Using Graph	
	Cuts, Segmentation Using Morphological Watersheds, Use of Motion in Segmentation	
	Segmentation	

V	 Image Segmentation II: Active Contours: Snakes and Level Sets: Background, Image Segmentation Using Snakes, Segmentation Using Level Sets. Feature Extraction: Background, Boundary Preprocessing, Boundary Feature Descriptors, Region Feature Descriptors, Principal Components as Feature Descriptors, Whole-Image Features, Scale-Invariant Feature Transform (SIFT) 	12
Reference	Books:	
1. Digital In	nage Processing, Gonzalez and Woods, Fourth, 2018	
2. Fundamer	ntals of Digital Image Processing, A K. Jain	
3. The Image	e Processing Handbook, J. C. Russ, Fifth, 2010	
E-Books ar	nd Online Learning Material :	
1) <u>https</u> pyth	://www.udemy.com/course/digital-image-processing-from-ground-up-in- on/	
2) <u>https</u>	://www.coursera.org/learn/introduction-image-processing	
3) <u>https</u>	:://onlinecourses.nptel.ac.in/noc19_ee55/preview_	

M.Sc Information Technology Course Code: IT404A Course Name: Image Processing Practical

Practical per week(1 periods is 60 minutes)	No. of Credits	Evaluation System
02	01	PR-50 Marks

List of Practicals

All practicals can be done in MATLAB / Scilab / Python

Note:

- 1) Use of built-in functions for matrix operations and mathematical operations are allowed
- 2) Use gray-level and color images or image matrices as input to all programs.

1) Basics

a) Program to calculate number of samples required for an image.

b)Program to study the effects of reducing the spatial resolution of a digital image.

c) Program to study the effects of varying the number of intensity levels in a digital image

d)Program to perform image averaging (image addition) for noise reduction.

e) Program to compare images using subtraction for enhancing the difference between images.

f) Image Registration.

2)Intensity transformation and Spatial Filtering IMAGE ENHANCEMENT

A) Basic Intensity Transformation functions

1. Program to perform Image negation

2. Program to perform threshold on an image.

3. Program to perform Log transformation

4. Power-law transformations

5. Piecewise linear transformations

a) Contrast Stretching

b)Gray-level slicing with and without background.

c) Bit-plane slicing

B)

1)Program to plot the histogram of an image and categorize

2) Program to apply histogram equalization

C) Write a program to perform convolution and correlation

D) Write a program to apply smoothing and sharpening filters on grayscale and color images

- 1. Low Pass
- 2. High Pass

Note: Use all kernels mentioned in the reference book

3) Filtering in Frequency Domain

1. Program to apply Discrete Fourier Transform on an image

- 2. Program to apply Low pass and High pass filters in frequency domain
- 3. Program to apply Laplacian filter in frequency domain

4. Note:All other filters can be applied, studied and compared with filters in the spatial domain.

5. Program for high frequency emphasis filtering, high boost and homomorphic filtering.

4) Image Denoising

1. Program to denoise using spatial mean, median and adaptive mean filtering

2. Program for Image deblurring using inverse, Wiener filters

5) Color Image Processing

- 1. Program to read a color image and segment into RGB planes , histogram of color image
- 2. Program for converting from one color model to another model
- 3. Program to apply false coloring(pseudo) on a grayscale image

6) Fourier Related Transforms

1. Program to compute Discrete Cosine Transforms, Walsh -Hadamard Transforms, Haar Transform , Wavelet

7) Image compression

1. Program to apply compression and decompression algorithms on an image (Arithmetic, Huffman and LZW coding techniques.

8) Morphological Image Processing

- 1. Program to apply erosion, dilation, opening, closing
- 2. Program for detecting boundary of an image
- 3. Program to apply Hit-or-Miss transform
- 4. Program to apply morphological gradient on an image
- 5. Program to apply Top-Hat/Bottom-hat Transformations

9) Image Segmentation

1. Program for Edge detection using

- a) Sobel, Prewitt, Marr-Hildreth and Canny
- 2. Illustrate Watershed segmentation algorithm
- 3. Any more to be included(to be consulted)

10) Feature Extraction

1. Apply Principal components for image description

2. Apply Harris-Stephens corner detector algorithm

M.Sc Information Technology Course Code: IT404B Course Name: Soft Computing Techniques

Periods per week(1 periods is 60	No. of Credits	Evaluation System
minutes)		
03	03	TH-60 Marks INT-40 Marks

IT404B Soft Computing Technique

Course Outcomes: After successful completion of this course, students will be able to:

- CO1:Identify and describe soft computing techniques and their roles inbuilding intelligent machines
- CO2:Recognize the feasibility of applying a soft computing methodology for a particular problem
- **CO3**:Apply fuzzy logic and reasoning to handle uncertainty and solve engineering problems
- CO4: Apply genetic algorithms to combinatorial optimization problems
- **CO5:**Apply neural networks for classification and regression problems

ICT Tools Used: Videos, PPT.

Students Centric Methods: Problem Solving and Participative

(Experimental, Participative, Problem Solving)

Links: SWAYAM / MOOCS:

- 1. https://onlinecourses.nptel.ac.in/noc22_cs54/preview
- 2. https://nptel.ac.in/courses/106105173
- 3. https://archive.nptel.ac.in/courses/106/105/106105173/

	The CO-PO Mapping Matrix											
CO\PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	P 01 0	PO1 1	PO12
CO1	2	-	2	-	-	-	-	-	-	-	-	-
CO2	-	-	3	-	1	-	-	-	-	-	-	1
CO3	-	-	-	-	-	-	2	-	-	-	-	-
CO4	2	-	-	-	2	-	-	-	-	-	-	-
CO5	2	-	-	-	-	-	-	-	-	-	-	1
	1	1	1	1	1	1	1	1	1	1	11	

Unit	Details	Lectures
I	Introduction of soft computing, soft computing vs. hard computing, various types of soft computing techniques, Fuzzy Computing, Neural Computing, Genetic Algorithms, Associative Memory, Adaptive Resonance Theory, Classification, Clustering, Bayesian Networks, Probabilistic reasoning, applications of soft computing.	

II	Artificial Neural Network: Fundamental concept, Evolution of Neural	
	Networks, Basic Models, McCulloh-Pitts Neuron, Linear	
	Separability,Hebb Network.	
	Supervised Learning Network: Perceptron Networks, Adaptive LinearNeuron,	
	Multiple Adaptive Linear Neurons,	
	BackpropagationNetwork,Radial Basis Function, Time Delay Network,	
	Functional Link Networks, Tree Neural Network.	
	Associative Memory Networks: Training algorithm for pattern Association.	
	Autoassociative memory network, hetroassociative memory network, bi-	
	directional associative memory, Hopfield networks, iterative autoassociative	
	memory networks, temporal associative memory networks.	
	UnSupervised Learning Networks: Fixed weight competitive nets,	
	Kohonen self-organizing feature maps, learning vectors quantization,	
	counterpropogation networks, adaptive resonance theory networks.	
	Special Networks: Simulated annealing, Boltzman machine, Gaussian	
	Machine, Cauchy Machine, Probabilistic neural net, cascade	
	correlationnetwork, cognition network, neo-cognition network, cellular	12
	neuralnetwork, optical neural network	
Ш	Third Generation Neural Networks: Spiking Neural networks,	
	convolutional neural networks, deep learningneural networks,	
	extreme learning machine model.	
	Introduction to Fuzzy Logic, Classical Sets and Fuzzy sets:	12
	Classical sets, Fuzzy sets.	
	Classical Relations and Fuzzy Relations:	
	Cartesian Product of relation, classical relation, fuzzy relations, tolerance	
	and equivalence relations, non-iterative fuzzy sets.	
	Membership Function: features of the membership functions,	
177	fuzzification, methods of membership value assignments.	
IV	Defuzzification: Lambda-cuts for fuzzy sets, Lambda-cuts for fuzzy	
	relations, Defuzzification methods. Fuzzy Arithmetic and Fuzzy measures: fuzzy arithmetic, fuzzy	
	measures, measures of fuzziness, fuzzy integrals.	
	Fuzzy Rule base and Approximate reasoning:	
	Fuzzy proportion, formation of rules, decomposition of rules, aggregation	
	of fuzzy rules, fuzzy reasoning, fuzzy inference systems, Fuzzy logic	
	control systems, control system design, architecture and operation of FLC	12
	system, FLC system models and applications of FLC System.	
V	Genetic Algorithm: Biological Background, Traditional optimization and	
	search techniques, genetic algorithm and search space, genetic algorithm	
	vs. traditional algorithms, basic terminologies, simple geneticalgorithm,	
	general genetic algorithm, operators in genetic algorithm, stopping condition for genetic algorithm flow, constraints in geneticalgorithm,	
	problem solving using genetic algorithm, the schematheorem,	
	classification of genetic algorithm, Holland classifier systems, genetic	
	programming, advantages and limitations and applications	
	ofgeneticalgorithm.Differential Evolution Algorithm, Hybrid soft	
	computing techniques –neuro – fuzzy hybrid, genetic neuro-hybrid	
	systems, genetic fuzzyhybrid and fuzzy genetic hybrid systems	

Reference Books:

Artificial Intelligence and Soft Computing ,Anandita DasBattac harya ,SPD, 3rd,2018
 Principles of Soft computing, S.N.Sivanandam S.N.Deepa,Wiley,3rd,2019
 Neuro-FuzzyandSoftComputing, J.S.R.Jang, C.T.Sun and E.Mizutani Prentice Hall of India, 2004

E-Books and Online Learning Material :

- 1) <u>https://onlinecourses.nptel.ac.in/noc22_cs54/preview</u>
- 2) <u>https://nptel.ac.in/courses/106105173</u>
- 3) https://archive.nptel.ac.in/courses/106/105/106105173/

			1.Sc Information Technolog Code: IT404A ourse Name: Soft Computin						
Prac 60 n		al per week(1 periods is utes)	No. of Credits	Evaluation System					
		02	01	PR-50 Marks					
List	of]	Practicals							
		Implement the following							
1	a	Design a simple linear ne	eural network model.						
	b	Calculate the output of no	eural net using both binary ar	nd bipolar sigmoidal function.					
		Implement the following	:						
2	a	Generate AND/NOT functi	on using McCulloch-Pitts neura	ıl net.					
	b	Generate XOR function usi	ng McCulloch-Pitts neural net.						
		Implement the Following	T						
3		Write a program to impleme							
	b	Write a program to implem	ent of delta rule.						
		Implement the Following							
4.		Write a program for Back							
	b		r Backpropagation algorithm.						
_		Implement the Following							
5.		Write a program for Hop							
	b	Write a program for Rad							
		Implement the Following							
6.		Kohonen Self organizing							
	b	Adaptive resonance theor							
7.		Implement the Following							
/•		Write a program for Line	_						
	D		Vrite a program for Hopfield network model for associative memory						
8.	6	Implement the Following							
0.		Membership and Identity	-						
	υ.	Membership and Identity	*						
		Implement the Following							

9.	a	Find ratios using fuzzy logic				
	b	Solve Tipping problem using fuzzy logic				
		Implement the Following				
10.	a	Implementation of Simple genetic algorithm				
	b	Create two classes: City and Fitness using Genetic algorithm				

M.Sc Information Technology Course Code: IT405 **Course Name: Research Methodology**

Periods per week(1 periods is 60 minutes)	No. of Credits	Evaluation System
03	03	TH-60 Marks INT- 40 Marks

IT405 Research Methodology

Course Outcomes: After successful completion of this course, students will be able to:

- **CO1:** solve real world problems with scientific approach. develop analytical skills by applying • scientific methods.
- CO2: recognize, understand and apply the language, theory and models of the field of business • analytics
- **CO3**: foster an ability to critically analyze, synthesize and solve complex unstructured business • problems
- CO4: understand and critically apply the concepts and methods of business analytics
- create viable solutions to decision making problems •
- CO5: Identify and describe soft computing techniques and their roles in building intelligent machines

ICT Tools Used: Videos, PPT.

Students Centric Methods: Problem Solving and Participative

(Experimental, Participative, Problem Solving)

Links: SWAYAM / MOOCS:

1) https://onlinecourses.nptel.ac.in/noc21_me68/preview 2)https://nptel.ac.in/courses/121106007

	The CO-PO Mapping Matrix											
CO\ PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO 11	PO 12
CO1	2	-	2	-	-	-	-	-	-	-	-	-
CO2	-	-	3	-	1	-	-	-	-	-	-	1
CO3	-	-	-	-	-	-	2	-	-	-	-	2
CO4		-	-	-	2	-	-	-	-	-	-	-
CO5	2	-	-	-	-	-	-	-	-	-	-	1
CO5	2	-	-	-	_	-	-	-	-	-	-	_

Unit	Details	Lectures
Ι	Introduction: Role of Business Research, Information Systems and Knowledge Management, Theory Building, Organization ethics and Issues	12
п	BeginningStages ofResearchProcess:Problemdefinition,Qualitative research tools, Secondary dataresearch	12
ш	ResearchMethodsandDataCollection:Surveyresearch, communicating with respondents, Observation methods,Experimentalresearch	12
IV	Measurement Concepts, Sampling and Field work: Levels of Scale measurement, attitude measurement, questionnaire design, sampling designs and procedures, determination of sample size	12
V	Data Analysis and Presentation: Editing and Coding, Basic Data Analysis, Univariate Statistical Analysis and Bivariate Statistical analysis and differences between two variables. Multivariate Statistical Analysis.	12
Reference	e Books:	
M.Griffin	s Research Methods, William G.Zikmund, B.J Babin, J.C. Carr,AtanuAdhizka , Cengage,8e,2016 ch Methods for Business Students Fifth Edition, Mark Saunders,2011	uri,
E-Books	and Online Learning Material :	
-	os://onlinecourses.nptel.ac.in/noc21_me68/preview_ os://nptel.ac.in/courses/121106007_	

		A.Sc Information Techno Code: IT405 e Name: Research Meth	
Practical per 60 minutes)	week(1 periods is	No. of Credits	Evaluation System
,	02	01	PR-50 Marks
Practica		Det	ails

	No	Details
	А	Write a program for obtaining descriptive statistics of data.

Boracle to R/Python/Excel)2ADesign a survey form for a given case study, collectthe primary data and analyze it3BPerform suitable analysis of given secondary data.3APerform testing of hypothesis using one sample t-test.3BPerform testing of hypothesis using two sample t-test.4APerform testing of hypothesis using chi-squared goodness-of-fit test.4BPerform testing of hypothesis using chi-squared goodness-of-fit test.5Perform testing of hypothesis using Z-test.6APerform testing of hypothesis using two-way ANOVA.6BPerform testing of hypothesis using multivariate ANOVA (MANOVA).7BPerform the Random sampling for the given data and analyse it.8Compute different types of correlation.9APerform linear regression for prediction.10APerform multiple linear regression.	1		Import data from different data sources (from Excel, csv, mysql, sql server,
2 A analyze it B Perform suitable analysis of given secondary data. 3 A Perform testing of hypothesis using one sample t-test. 3 B Perform testing of hypothesis using two sample t-test. C Perform testing of hypothesis using paired t-test. 4 A Perform testing of hypothesis using chi-squared goodness-of-fit test. 4 B Perform testing of hypothesis using chi-squared Test of Independence 5 Perform testing of hypothesis using one-way ANOVA. 6 A Perform testing of hypothesis using two-way ANOVA. 7 B Perform testing of hypothesis using multivariate ANOVA (MANOVA). 7 A Perform the Random sampling for the given data and analyse it. 8 Compute different types of correlation. 9 A Perform multiple linear regression for prediction. 10 A Perform multiple linear regression.		В	oracle to R/Python/Excel)
analyze it B Perform suitable analysis of given secondary data. A Perform testing of hypothesis using one sample t-test. B Perform testing of hypothesis using two sample t-test. C Perform testing of hypothesis using paired t-test. A Perform testing of hypothesis using chi-squared goodness-of-fit test. B Perform testing of hypothesis using chi-squared goodness-of-fit test. B Perform testing of hypothesis using chi-squared Test of Independence 5 Perform testing of hypothesis using one-way ANOVA. 6 A Perform testing of hypothesis using two-way ANOVA. C Perform testing of hypothesis using multivariate ANOVA (MANOVA). 7 A Perform the Random sampling for the given data and analyse it. 7 B Perform the Stratified sampling for the given data and analyse it. 9 A Perform linear regression for prediction. 9 B Perform multiple linear regression. 10 A Perform multiple linear regression.			Design a survey form for a given case study, collect the primary data and
3 A Perform testing of hypothesis using one sample t-test. 3 B Perform testing of hypothesis using two sample t-test. C Perform testing of hypothesis using paired t-test. 4 A Perform testing of hypothesis using chi-squared goodness-of-fit test. 5 Perform testing of hypothesis using chi-squared Test of Independence 5 Perform testing of hypothesis using chi-squared Test of Independence 6 B Perform testing of hypothesis using chi-squared Test of Independence 6 Perform testing of hypothesis using chi-squared Test of Independence 7 A Perform testing of hypothesis using chi-squared Test of Independence 6 B Perform testing of hypothesis using chi-squared Test of Independence 7 A Perform testing of hypothesis using one-way ANOVA. 6 B Perform testing of hypothesis using two-way ANOVA. 7 A Perform testing of hypothesis using two-way ANOVA (MANOVA). 7 B Perform the Random sampling for the given data and analyse it. 8 Compute different types of correlation. Perform linear regression for prediction. 9 A Perform multiple linear regression. Perform multiple linear regr	2	Α	analyze it
3 Image: Construction of the second struction of the sec		В	Perform suitable analysis of given secondary data.
B Perform testing of hypothesis using two sample t-test. C Perform testing of hypothesis using paired t-test. A Perform testing of hypothesis using chi-squared goodness-of-fit test. B Perform testing of hypothesis using chi-squared Test of Independence 5 Perform testing of hypothesis using Z-test. 6 A Perform testing of hypothesis using one-way ANOVA. C Perform testing of hypothesis using two-way ANOVA. C Perform testing of hypothesis using two-way ANOVA. 7 A Perform testing of hypothesis using two-way ANOVA. 7 A Perform testing of hypothesis using two-way ANOVA. 8 Compute different types of correlation. 9 A Perform the Stratified sampling for the given data and analyse it. 8 Compute different types of correlation. 9 A Perform linear regression for prediction. 10 A Perform multiple linear regression.	2	Α	Perform testing of hypothesis using one sample t-test.
A Perform testing of hypothesis using chi-squared goodness-of-fit test. B Perform testing of hypothesis using chi-squared Test of Independence 5 Perform testing of hypothesis using Z-test. 6 A Perform testing of hypothesis using one-way ANOVA. 6 B Perform testing of hypothesis using two-way ANOVA. 7 A Perform testing of hypothesis using multivariate ANOVA (MANOVA). 7 A Perform the Random sampling for the given data and analyse it. 8 Compute different types of correlation. 9 A Perform linear regression for prediction. 10 A Perform multiple linear regression.	3	В	Perform testing of hypothesis using two sample t-test.
4 B Perform testing of hypothesis using chi-squared Test of Independence 5 Perform testing of hypothesis using Z-test. 6 A Perform testing of hypothesis using one-way ANOVA. 6 B Perform testing of hypothesis using two-way ANOVA. 7 C Perform testing of hypothesis using multivariate ANOVA (MANOVA). 7 A Perform the Random sampling for the given data and analyse it. 7 B Perform the Stratified sampling for the given data and analyse it. 8 Compute different types of correlation. 9 A Perform linear regression for prediction. 9 B Perform multiple linear regression. 10 A Perform multiple linear regression.		С	Perform testing of hypothesis using paired t-test.
BPerform testing of hypothesis using chi-squared Test of Independence5Perform testing of hypothesis using Z-test.6APerform testing of hypothesis using one-way ANOVA.6BPerform testing of hypothesis using two-way ANOVA.CPerform testing of hypothesis using two-way ANOVA (MANOVA).7APerform testing of hypothesis using multivariate ANOVA (MANOVA).7BPerform the Random sampling for the given data and analyse it.8Compute different types of correlation.9APerform linear regression for prediction.9BPerform multiple linear regression.10APerform multiple linear regression.	4	Α	Perform testing of hypothesis using chi-squared goodness-of-fit test.
A Perform testing of hypothesis using one-way ANOVA. B Perform testing of hypothesis using two-way ANOVA. C Perform testing of hypothesis using multivariate ANOVA (MANOVA). A Perform the Random sampling for the given data and analyse it. B Perform the Stratified sampling for the given data and analyse it. B Perform the Stratified sampling for the given data and analyse it. B Perform the Stratified sampling for the given data and analyse it. B Perform the stratified sampling for the given data and analyse it. B Perform the stratified sampling for the given data and analyse it. B Perform the stratified sampling for the given data and analyse it. B Perform linear regression for prediction. B Perform linear regression for prediction. B Perform multiple linear regression.	4	В	Perform testing of hypothesis using chi-squared Test of Independence
6 A Perform testing of hypothesis using two-way ANOVA. C Perform testing of hypothesis using multivariate ANOVA (MANOVA). 7 A Perform the Random sampling for the given data and analyse it. 7 B Perform the Stratified sampling for the given data and analyse it. 8 Compute different types of correlation. 9 A Perform linear regression for prediction. 9 B Perform multiple linear regression. 10 A Perform multiple linear regression.	5		Perform testing of hypothesis using Z-test.
BPerform testing of hypothesis using two-way ANOVA.CPerform testing of hypothesis using multivariate ANOVA (MANOVA).7APerform the Random sampling for the given data and analyse it.7BPerform the Stratified sampling for the given data and analyse it.8Compute different types of correlation.9APerform linear regression for prediction.9BPerform polynomial regression for prediction.10DPerform multiple linear regression.		Α	Perform testing of hypothesis using one-way ANOVA.
A Perform the Random sampling for the given data and analyse it. B Perform the Stratified sampling for the given data and analyse it. B Compute different types of correlation. 9 A Perform linear regression for prediction. 9 B Perform polynomial regression for prediction. 10 A Perform multiple linear regression.	0	В	Perform testing of hypothesis using two-way ANOVA.
7 B Perform the Stratified sampling for the given data and analyse it. 8 Compute different types of correlation. 9 A Perform linear regression for prediction. 9 B Perform polynomial regression for prediction. 10 A Perform multiple linear regression.		С	Perform testing of hypothesis using multivariate ANOVA (MANOVA).
B Perform the Stratified sampling for the given data and analyse it. 8 Compute different types of correlation. 9 A Perform linear regression for prediction. 9 B Perform polynomial regression for prediction. 10 A Perform multiple linear regression.	7	Α	Perform the Random sampling for the given data and analyse it.
A Perform linear regression for prediction. B Perform polynomial regression for prediction. A Perform multiple linear regression.	/	В	Perform the Stratified sampling for the given data and analyse it.
9 B Perform polynomial regression for prediction. 10 A Perform multiple linear regression.	8		Compute different types of correlation.
B Perform polynomial regression for prediction. A Perform multiple linear regression.	Ω	Α	Perform linear regression for prediction.
	у У	В	Perform polynomial regression for prediction.
	10	Α	Perform multiple linear regression.
B Fororial Logistic regression.	10	В	Perform Logistic regression.

Semester -II

M.Sc Information Technology Course Code: IT451 Course Name: Data Science

Periods per week(1 periods is 60	No. of Credits	Evaluation System	
minutes)			
04	04	TH-60 Marks	
		INT-40 Marks	

IT451 Data Science

Course Outcomes: After successful completion of this course, students will be able to:

CO1: Apply quantitative modeling and data analysis techniques to the solution of real world business problems, communicate findings, and effectively present results using data visualization techniques

CO2: Recognize and analyze ethical issues in business related to intellectual property, data security, integrity, and privacy.

CO3: Apply ethical practices in everyday business activities and make well- reasoned ethical business and data management decisions.

CO4: Demonstrate knowledge of statistical data analysis techniques utilized in business decision making.

CO5: Apply principles of Data Science to the analysis of business problems.

ICT Tools Used: Videos, PPT, Python

Students Centric Methods: Problem Solving and Participative

(Experimental, Participative, Problem Solving)

Links: SWAYAM / MOOCS:

1. https://onlinecourses.nptel.ac.in/noc21_cs69/preview

2. https://www.udemy.com/course/python-for-data-science-and-machine-learning-bootcamp/

3. https://www.coursera.org/professional-certificates/ibm-data-science

<u>The CO-PO Mapping Matrix</u>												
CO\P O	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO11	PO12
CO1	-	-	2	2	-	-	-	-	-	-	-	-
CO2	-	-	-	2	-	-	-	-	3	-	-	-
CO3	-	-	-	-	-	-	1	2	3	-	-	1
CO4	-	2	-	-	-	-	-	2	-	-	-	-
CO5	-	-	-	2	-	-	-	3	-	-	-	-

Unit	Details	Lectures		
I	Data Science TechnologyStack:Rapid Information FactoryEcosystem, Data Science Storage Tools, Data Lake, Data Vault, DataWarehouse Bus Matrix, Data Science Processing Tools ,Spark,Mesos,Akka,Cassandra,Kafka,ElasticSearch,R,Scala,Python,MQTT,TheFutureLayered Framework:Definition of Data Science Framework, Cross-IndustryStandardProcessforDataMining(CRISP-DM),	12		

	Homogeneous Ontology for Recursive Uniform Schema, The Top	
	Layers of a Layered Framework, Layered Framework for High-Level	
	Data Science and Engineering Business Lever , Engineering a Prostical Business	
	Business Layer: Business Layer, Engineering a Practical Business	
	Layer	
	Utility Layer: Basic Utility Design, Engineering a Practical Utility	
	Layer	
П	 Three Management Layers: Operational Management Layer, Processing-Stream Definition and Management, Audit, Balance, and Control Layer, Balance, Control, Yoke Solution, Cause-and-Effect, Analysis System, Functional Layer, Data Science Process Retrieve Superstep : Data Lakes, Data Swamps, Training the Trainer Model, Understanding the Business Dynamics of the Data Lake, Actionable Business Knowledge from Data Lakes, Engineering a Practical Retrieve Superstep, Connecting to Other Data Sources, 	12
	Assess Superstep: Assess Superstep, Errors, Analysis of	
III	Data, Practical Actions, Engineering a Practical Assess	12
	Superstep,	
IV	Process Superstep : Data Vault, Time-Person-Object-Location- Event Data Vault, Data Science Process, Data Science, Transform Superstep : Transform Superstep, Building a Data Warehouse, Transforming with Data Science, Hypothesis Testing, Overfitting and Underfitting, Precision-Recall, Cross-Validation Test.	12
V	 Transform Superstep: Univariate Analysis, Bivariate Analysis, Multivariate Analysis, Linear Regression, Logistic Regression, Clustering Techniques, ANOVA, Principal Component Analysis (PCA), Decision Trees, Support Vector Machines, Networks, Clusters, and Grids, Data Mining, Pattern Recognition, Machine Learning, Bagging Data,Random Forests, Computer Vision (CV), Natural Language Processing (NLP), Neural Networks, TensorFlow. Organize and Report Supersteps : Organize Superstep, Report Superstep, Graphics, Pictures, Showing the Difference 	12
Refere	nce Books:	
	tical Data Science, Andreas François Vermeulen, 2018	
	ciples of Data Science, SinanOzdemir, 2016	
	Science from Scratch, Joel Grus, O"Reilly, 2015	
	Science from Scratch first Principle in python, Joel Grus, Shroff Publishers	. 2017
	erimental Design in Data science with Least Resources, N.C.Das, 2018	,
-	s and Online Learning Material :	
	https://onlinecourses.nptel.ac.in/noc21_cs69/preview	
	https://www.udemy.com/course/python-for-data-science-and-machine-learning-	
	bootcamp/	
3)	https://www.coursera.org/professional-certificates/ibm-data-	
	science	

C	M.Sc Information Tech Course Code: IT45	51							
Course Name: Data Science Practical									
Practical per week(1 periods	No. of Credits	Evaluation System							
is 60 minutes)	02								
04 List of Practicals	02	PR-50 Marks							
1)Creating a Data Model us	ing Cassandra.								
2)Conversion from differen		at.							
A) Text delimited csv form	nat.								
B) XML									
C) JSON									
D) My SQL Database									
E) Picture (JPEG)									
F)Video									
G) Audio									
3) Utilities and Auditing									
4) Retrieving Data									
5) Assessing Data									
6) Processing Data									
7) Transforming Data									
8) Organizing Data									
9) Generating Report									
10) Data Visualization with	Power BI								

					Course	e Code:						
			Cou	rse Nai	ne: Ap	plied A	rtificia	l Intelli	gence			
Periods	a ner we	ek(1 n	eriods	No.	of Cree	dits		1	Evalua	tion Sys	tem	
is 60 m	-	viii(1 p	011045	1.00					L'uluu	of the second		
	,	3				03				TH-60	Marks	
										INT-40	Marks	
							T (11)	•				
G	0		(T452)					0				
					-					ill be ab		aa (A]
	its four			mental	unders	tanding	or the	nistory	of arti	ificial in	temgen	ce (Al
				nles of	AI in	solutio	ns that	require	e probl	em solv	vino inf	erence
		•	edge rep	-				require		5010	111 <u>5</u> , 1111	CICIC
								standin	g of var	rious ap	plicatior	ns of A
										orks and		
	ning mo		0 (1							
	-		e an abil	lity to s	share in	discuss	sions of	AI, its	curren	t scope a	and limi	tation
	societal	-										
			_	-		-			model	s of mac	hine lea	rning
ICT	Tools	Used:	Videos	s, PPT,	, Pytho	n IDI l	¬ т •					
					•		E, Jupi	ter				
Stuc	lents C			ds: Pro	•		•					
		Centric	Metho		oblem Se	olving a	•					
(Exp	erimenta	C entric al, Partic	Metho	Problen	oblem Se	olving a	•					
(Exp <u>Linl</u> 1.	erimenta ks: SW https://w	Centric al, Partic AYAN ww.ude	e Metho cipative, M / MO my.com/o	Problem OCS: course/n	oblem Sen n Solving nodern-a	olving an g) urtificial-	nd Partic	cipative	-zero-co	ding/		
(Exp <u>Linl</u> 1.	erimenta ks: SW https://w	Centric al, Partic AYAN ww.ude	e Metho cipative, M / MO	Problem OCS: course/n	oblem Sen n Solving nodern-a	olving an g) urtificial-	nd Partic	cipative	-zero-co	ding/		
(Exp <u>Linl</u> 1.	erimenta ks: SW https://w	Centric al, Partic AYAN ww.ude	e Metho cipative, M / MO my.com/o	Problem OCS: course/n el.ac.in/r	oblem So n Solvin, nodern-a noc22 cs 'he CC	olving an g) rtificial- s83/prev)-PO N	nd Partic ntelliger iew //appi	cipative	-zero-co	ding/		
(Exp <u>Linl</u> 1.	erimenta ks: SW https://w	Centric al, Partic AYAN ww.ude	e Metho cipative, M / MO my.com/o	Problem OCS: course/n el.ac.in/r	oblem So n Solvin, nodern-a noc22 cs 'he CC	olving an g) artificial-i s83/prev	nd Partic ntelliger iew //appi	cipative	-zero-co	ding/		
(Exp Linl 1.] 2.] CO\	erimenta ks: SW https://w https://or	Centric al, Partic AYAN ww.uden nlinecou P	e Metho cipative, M / MO my.com/d urses.npte	Problem OCS: course/n el.ac.in/r T P	boblem Solvin nodern-a noc22 cs The CC	olving an g) artificial-i s83/prev D-PO N Matrix P	nd Partic ntelliger iew /Iappin x P	cipative nce-with ng P	Р	PO	РО	P
(Exp Linl 1.] 2.]	erimenta ks: SW https://w https://or P O	Centric al, Partic (AYAN ww.uden nlinecou P O	P O P M P O	Problem OCS: course/n cl.ac.in/r T P O	boblem Solvin nodern-a noc22 cs The CC	olving an g) rtificial-i s83/prev)-PO N Matri P O	nd Partic intelligen iew Aappin <u>x</u> P O	cipative nce-with ng P O	P O		PO 11	01
(Exp Linl 1.] 2.] CO\ PO	erimenta ks: SW https://w https://o https://o	Centric al, Partic AYAN ww.uder nlinecou P O 2	P O B P O C C C C C C C C C C C C C C C C C C	Problem OCS: course/n el.ac.in/r T P	boblem Solvin nodern-a noc22 cs The CC P O 5	olving an g) artificial-i s83/prev D-PO N Matri P O 6	nd Partic <u>ntelliger</u> <u>iew</u> <u>/Iappin</u> <u>x</u> P O 7	nce-with ng P O 8	P O 9	PO 10	11	01 2
(Exp Linl 1.] 2.] CO\	erimenta ks: SW https://w https://or P O 1 3	Centric al, Partic (AYAN ww.uden nlinecou P O	P O P M P O	Problem OCS: course/n d.ac.in/r T P O 4 -	boblem Solvin nodern-a noc22 cs he CC P O 5 -	olving ar g) rtificial-i s83/prev D-PO N Matrix P O 6 -	nd Partic intelligen iew Aappin <u>x</u> P O	ripative nce-with ng P O 8 -	P O 9 -	PO	-	01 2 -
(Exp Linl 1. 1 2. 1 CO PO	erimenta ks: SW https://w https://o https://o	Centric al, Partic AYAN ww.uder nlinecou P O 2	P O B P O C C C C C C C C C C C C C C C C C C	Problem OCS: course/n cl.ac.in/r T P O	boblem Solvin nodern-a noc22 cs The CC P O 5	olving an g) artificial-i s83/prev D-PO N Matri P O 6	nd Partic <u>ntelliger</u> <u>iew</u> <u>/Iappin</u> <u>x</u> P O 7	nce-with ng P O 8	P O 9	PO 10	11	01 2
(Exp Linl 1.] 2.] CO\ PO CO1 CO2	erimenta ks: SW https://w https://or P O 1 3	Centric al, Partic AYAN ww.uder nlinecou P O 2	P O B P O C C C C C C C C C C C C C C C C C C	Problem OCS: course/n d.ac.in/r T P O 4 -	boblem Solvin nodern-a noc22 cs he CC P O 5 -	olving ar g) rtificial-i s83/prev D-PO N Matrix P O 6 -	nd Partic <u>ntelliger</u> <u>iew</u> <u>/Iappin</u> <u>x</u> P O 7	ripative nce-with ng P O 8 -	P O 9 -	PO 10	-	01 2 -
(Exp Linl 1.] 2.] CO\ PO CO1 CO2 CO3	erimenta ks: SW https://w https://or P O 1 3 1	P Centric AYAN ww.uden nlinecou P O 2 -	P O O P O O O O O O O O O O O O O O O O	Problem OCS: course/n el.ac.in/r T P O 4 - -	boblem Solvin nodern-a noc22 cs 'he CC P O 5 -	olving ar g) rtificial-i s83/prev D-PO N Matrix P O 6 -	nd Partic <u>iew</u> <u>Aappin</u> <u>x</u> P O 7 -	P O 8 - 2	P O 9 -	PO 10 -	11 - -	01 2 - -
(Exp Linl 1.] 2.] CO\ PO CO1 CO2	erimenta ks: SW https://w https://or P O 1 3 1	P Centric AYAN ww.uden nlinecou P O 2 -	P O O P O O O O O O O O O O O O O O O O	Problem OCS: course/n el.ac.in/r T P O 4 - - -	nodern-a noc22 cs he CC P O 5 - -	olving ar g) rtificial-i s83/prev)-PO N Matrin P O 6 - - -	nd Partic <u>iew</u> <u>Aappin</u> <u>x</u> P O 7 - - -	P O 8 - 2 -	P 0 9 - -	PO 10 -	11 - - -	01 2 - -

Unit	Details	Lectures
	Review of AI: History, foundation and Applications	
	Expert System and Applications: Phases in Building Expert	
I	System, Expert System Architecture, Expert System versus	12
	Traditional Systems, Rule based Expert Systems, Blackboard	
	Systems, Truth Maintenance System, Application of Expert	
	Systems, Shells and Tools	

п	Probability Theory: joint probability, conditional probability, Bayes''s theorem, probabilities in rules and facts of rule based system, cumulative probabilities, rule based system and Bayesian method Fuzzy Sets and Fuzzy Logic: Fuzzy Sets, Fuzzy set operations, Types of Membership Functions, Multivalued Logic, Fuzzy Logic, Linguistic variables and Hedges, Fuzzy propositions, inference rules for fuzzy propositions, fuzzy systems, possibility theory and other enhancement to Logic	12
---	--	----

ш	 Machine Learning Paradigms: Machine Learning systems, supervised and unsupervised learning, inductive learning, deductive learning, clustering, support vector machines, cased based reasoning and learning. Artificial Neural Networks: Artificial Neural Networks, Single-Layer feedforward networks, multi-layer feed-forward networks, radial basis function networks, design issues of artificial neural networks and recurrent networks 	12
IV	Evolutionary Computation: Soft computing, genetic algorithms, genetic programming concepts, evolutionary programming, swarm intelligence, ant colony paradigm, particle swarm optimization and applications of evolutionary algorithms. Intelligent Agents: Agents vs software programs, classification of agents, working of an agent, single agent and multiagent systems, performance evaluation, architecture, agent communication language, applications	12
V	Advanced Knowledge Representation Techniques: Conceptual dependency theory, script structures, CYC theory, script structure, CYC theory, case grammars, semantic web. Natural Language Processing: Sentence Analysis phases, grammars and parsers, types of parsers, semantic analysis, universal networking language, dictionary	
Reference B	Books:	
Saroj Kaushi Cengage, 1st	Data Science, Andreas François Vermeulen, 2018 Artificial Intelligence, ik Edition, 2019 Intelligence: A Modern Approach, Russel, Peter Norvig	
	Intelligence, Elaine Rich, Kevin Knight, Shivashankar, B. Nair	
	d Online Learning Material :	
1) <u>https:</u>	//www.udemy.com/course/modern-artificial-intelligence-with-zero-coding/ //onlinecourses.nptel.ac.in/noc22_cs83/preview_	

M.Sc Information Technology Course Code: IT452 Course Name: Applied Artificial Intelligence Practical

Practical per week(1 periods is 60 minutes)	No. of Credits	Evaluation System
02	01	PR-50 Marks

List of Practicals

1) Implement Bayes Theorem using Python.

2) Implement Conditional Probability and joint probability using Python.

3) Implement ratios using fuzzy logic

4) Write an application to implement kmeans clustering algorithm.

5) Write an application to implement support vector machine algorithm.

6) Write A Program in Python for Removing stop words with NLTK.

7) Case Study on Prolog

8) Write A Program in Python to Create A New Column in Pandas Data Frame Based on The Existing Columns.

			M.	Sc Info	rmation	Techno IT453	logy Cou	rse Cod	e:			
			(Course N	Name: M		vice Arc	hitectur	e			
Periods	per wee	k(1 perio	ods	No.	of Credi	its		Eval	uation S	ystem		
is 60 miı	nutes)											
		03		03				TH-6	60 Mark	s INT-40		
									Mark	S		
			IT/15	3 Mior	ocorvio	oc Aro	hitectu	r 0				
Course	Jutcom	es• After	successfi					-	he able t	0.		
			plication	-				mus will		0.		
								s busine	ss logic	within	Model r	nethod
		nd events.					1		U			
				/C appl	ication t	hat disp	lay and	edit data	and int	eract w	ith Mode	ls and
Cont	rollers.					-	-					
			ability th	0			1					
CO5	: Gainin	g thoroug	gh unders	tanding	of the ph	nilosoph	y and arc	hitecture	of .NET	Core		
ICT '	<u> Tools U</u>	J sed: Vi	deos, PP	T, Post	Gress, S	QL						
Stud	onte Co	ntrio M	ethods:	Droblom	Solvingo	nd Dortio	inativa					
			tive, Probl			inu r ai tic	ipative					
· .			MOOCS		<u>6</u>)							
			om/course		vices-arcl	hitecture-	the-compl	ete-guide/	/			
	-		.org/lecture				-	-	-	ervices-		
			_	The	CO-PO	O Map	ping M	atrix				
CO\P	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO	PO
O O	1		3	4	5	6	7	8	PO 9		11	2
C01	-	-	-	-	-	-	2	2	-	-	-	
	_		2	-	-	-	-	-		_	_	-
CO2	_		2	_	_	_	_	_	_	_		2
CO3	_	-	-	_	_	_	2		_	_		- 1
CO4	2		_			_	-		_			
CO5		-	-	-	-	-	-	-	-	-	-	-
Γ	Jnit					Details					Lecture	s
		Micros	ervices:	Unc	derstandi		Microser	vices.				
					ng Micro	-		,	The			

Ome	Detuns	Lectures					
	Microservices: Understanding Microservices,						
	Adopting Microservices, The						
	Microservices Way.						
т	Microservices Value Proposition: Deriving Business Value,	12					
L	defining a Goal-Oriented, Layered Approach, Applying the Goal-						
	Oriented, Layered Approach.						
	Designing Microservice Systems: The Systems Approach to						
	Microservices, A Microservices Design Process,						
	Establishing a Foundation: Goals and Principles, Platforms, Culture.						

п	 Service Design: Microservice Boundaries, API design for Microservices, Data and Microservices, Distributed Transactions and Sagas, Asynchronous Message-Passing and Microservices, dealing with Dependencies, System Design and Operations: Independent Deployability, More Servers, Docker and Microservices, Role of Service Discovery, Need for an API Gateway, Monitoring and Alerting. Adopting Micro services in Practice: Solution Architecture Guidance, Organizational Guidance, Culture Guidance, Tools and Process Guidance, Services Guidance. 	12
ш	 Building Microservices with ASP.NET Core: Introduction, Installing .NET Core, Building a Console App, Building ASP.NET Core App. Delivering Continuously: Introduction to Docker, Continuous integration with Wercker, Continuous Integration with CircleCI, Deploying to Docker Hub. Building Microservice with ASP.NET Core: Microservice, Team Service, API First Development, Test First Controller, Creating a CI pipeline, Integration Testing, Running the team service Docker Image. Backing Services: Microservices Ecosystems, Building the location Service, Enhancing Team Service. 	12
IV	Creating Data Service: Choosing a Data Store, Building a Postgres Repository, Databases are Backing Services, Integration Testing Real Repositories, Exercise the Data Service. Event Sourcing and CQRS: Event Sourcing, CQRS pattern, Event Sourcing and CQRS, Running the samples. Building an ASP.NET Core Web Application: ASP.NET Core Basics, Building Cloud-Native Web Applications. Service Discovery: Cloud Native Factors, Netflix Eureka, Discovering And Advertising ASP.NET Core Services. DNS and Platform Supported Discovery.	12
V	Configuring Microservice Ecosystems: Using Environment Variables with Docker, Using Spring Cloud Config Server, Configuring Microservices with etc, Securing Applications and Microservices: Security in the Cloud, Securing ASP.NET Core Web Apps, Securing ASP.NET Core Microservices. Building Real-Time Apps and Services: Real-Time Applications Defined, Web sockets in the Cloud, Using a Cloud Messaging Provider, Building the Proximity Monitor. Putting It All Together: Identifying and Fixing Anti-Patterns, Continuing the Debate over Composite Microservices, The Future.	12
Referenc		
	ervice Architecture: Aligning Principles, Practices, andCulture IrakliNadareis al Intelligence: A Modern Approach, Russel, Peter Norvig	hvili,
3. Artifici	al Intelligence, Elaine Rich, Kevin Knight, Shivashankar, B. Nair	
	and Online Learning Material :	
	ps://www.udemy.com/course/modern-artificial-intelligence-with-zero-coding/ ps://onlinecourses.nptel.ac.in/noc22_cs83/preview	

	M.Sc Information Techr									
Course Code: IT453										
	Course Name: Microservice	s Architecture								
	Practical									
Practical per week(1	No. of Credits	Evaluation System								
periods is 60 minutes)										
02	01	PR-50 Marks								
List of Practicals										
Practicals can be done with along with Docker and Doc	· · ·	le with ASP.NET Core 3.1.x installed								
1) Building APT.NET Core	MVC Application.									
2) Building ASP.NET Core	REST API.									
3) Working with Docker, Do	ocker Commands, Docker Ima	ges and Containers								
· ·		Docker Volumes and Networks.								

- 5)Working with Docker Swarm.
- 6) Working with Circle CI for continuous integration.
- 7) Creating Microservice with ASP.NET Core.
- 8) Working with Kubernetes.
- 9) Creating Backing Service with ASP.NET Core.
- 10) Building real-time Microservice with ASP.NET Core.

IT453 Microservices Architecture

Course Outcomes: After successful completion of this course, students will be able to:

CO1: Develop web applications using Model View Control.

CO2: Create MVC Models and write code that implements business logic within Model methods, properties, and events.

CO3: Create Views in an MVC application that display and edit data and interact with Models and Controllers.

CO4: Boost your hire ability through innovative and independent learning

CO5: Gaining thorough understanding of the philosophy and architecture of .NET Core

ICT Tools Used: Videos, PPT, PostGress, SQL

Students Centric Methods: Problem Solving and Participative

(Experimental, Participative, Problem Solving)

Links: SWAYAM / MOOCS:

3. https://www.udemy.com/course/microservices-architecture-the-complete-guide/

4. https://www.coursera.org/lecture/service-oriented-architecture/4-3-3-introduction-to-icroservices-

The CO-PO Mapping Matrix

CO\P	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1 2
O	1	2	3	4	5	6	7	8	9	0	1	
CO1	-	-	-	-	-	-	2	2	-	-	-	-

CO2	-	-	2	-	-	-	-	-	-	-	-	-
CO3	-	-	2	-	-	-	-	-	-	-	-	2
CO4	-	-	-	-	-	-	2	-	-	-	-	1
CO5	2	-	-	-	-	-	-	-	-	-	-	-

				M.Sc I	nform		echnolo 1454A	ogy Cou	ırse Cod	e:		
				C	ourse l	Name: (Compu	ter For	rensics			
Periods is 60 mi	-	eek(1 p	eriods	No.	of Cree	lits]	Evaluati	on Syster	n	
		3				03]	FH-60 M	arks INT-4	0
									N	Iarks		
							er For					
										l be able		
							g and i	ts asso	ciated a	pplicatior	is in Info	rmation
			echnolo		/							
			e need o									
								nd vari	ous secu	rity issue	s in ICT w	orld, and
			forensic								1 0	
											tools for a	nalysis to
						er foren	isic inve	estigatio	on in var	ious appli	cations.	
	1 0015	Usea:	Video	s, PP1.								
Stuc	lents C	entric	Metho	ds: Pro	blem So	olving a	nd Partic	ipative				
			ipative,					<u>^</u>				
			// MO									
			rsera.org									
2.]	https://w	ww.udei	my.com/		-	-			nfinite-sk	ills/		
				<u>T</u> .	he CO	9-PO N	/lappi	ng Ma	trix			
CO\	Р	Р	Р	Р	Р	Р	Р	Р	РО	PO1	PO11	PO12
PO	0	0	0	0	0	0	0	0	9	0		
	1	2	3	4	5	6	7	8				
CO1	3	-	-	-	-	-	-	-	-	-	-	-
CO2	2	-	-	-	1	-	-	-	-	-	-	-
CO3	-	-	-	-	-	-	3	-	1	-	-	-
CO4	-	-	3	-	-	-	-	-	1	-	-	2

Unit	Details	Lectures
Ι	Computer Forensics and Investigation Processes, Understanding Computing Investigations, The Investigator's Office and Laboratory, Data Acquisitions.	12

	Processing Crime and Incident Scenes, Working with Windows	12
II	and DOS Systems, Current Computer Forensics Tools.	
	Macintosh and Linux Boot Processes and File Systems, Computer	12
III	Forensics Analysis, Recovering Graphics Files.	

IV	Virtual Machines, Network Forensics, and Live Acquisitions, E- mail Investigations, Cell Phone and Mobile Device Forensics	12				
v	Report Writing for High-Tech Investigations, Expert Testimony in High- 12 Tech Investigations, Expert Testimony in High- 12					
Books	s / References:					
1)Gui Steuar	de to Computer Forensics and Investigations,Bell Nelson, Amelia Philli PG, Ch t,4th,	ristopher				
2)Con	nputer Forensics A Pocket Guide, Nathan Clarke, I.T, Governance Publishing					
	nputer Forensics: Computer, Crime Scene Investigation, John R. Vacca, 2nd n, Charles River Media					
E-Boo	oks and Online Learning Material :					
1) <u>http</u>	1)https://onlinecourses.swayam2.ac.in/cec20_lb06/preview_					
2) <u>http</u>	2) https://www.classcentral.com/course/swayam-digital-forensics-45145					

M.Sc Information Technology Course Code: IT454A Course Name: Computer Forensics Practical						
Practical per week(1	No. of Credits	Evaluation System				
periods is 60 minutes)						
02	01	PR-50 Marks				
List of Practicals						
 Using Windows forensic Using Data acquisition to Using file recovery tools Using Forensic Toolkit (1) 	pols					
5) Forensic Investigation us	ing EnCase					
6) Using Steganography too	bls					
7) Using Password Cracking tools						
8) Using Log Capturing and	l Analysis tools					
9) Using Traffic capturing a	nd Analysis tools					
10) Using Wireless forensic	es tools					

				C	Inform Course C Se Name	Code: I	Г454В					
Periods p	er wee	ek(1 p	eriods	No. c	of Credit	ts		F	Evalua	tion Sys	tem	
is 60 min	utes)											
	03	\$				03				TH-60 INT-40		
			IT45	4B Co	mpute	r Visio	n					
Course O	utcom	nes: A			-			e. stud	ents w	ill be ab	le to:	
					image pr							vision
					n process		C	1	I		1	
			shape an		•							
CO4:	Extrac	et feati	ures form	n Image	s and do	analysi	s of Im	ages				
ICT T	<u>'ools (</u>	U sed:	Videos	s, PPT ,	SciLab							
			Metho		blem Solv Solving)	ving and	Particip	ative				
1. <u>htt</u>	ps://wv	vw.cou		/specializ	zations/fin							
2. <u>htt</u>	ps://on	linecou	irses.npte		<u>0c19_cs58</u>	-						
				<u>T</u>	ne CO-l M	PO Ma latrix	apping					
CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO	PO9	PO10	PO11	PO12
CO1	-	-	2	-	1	-	-	-	-	-	-	-
CO2	2	-	-	-	-	-	-	-	-	-	-	-
CO3	-	-	-	2	-	-	2	-	-	-	-	-
CO4	-	-	-	2	-	-	2	-	-	-	-	-
CO5	-	-	-	-	-	3	2	-	-	-	-	-
						1						

Unit	Details	Lectures			
Ι	Introduction: What is computer vision?, A brief history, Image formation,				
	Geometric primitives and transformations, Geometric primitives,				
	D transformations, D transformations, D rotations, D to D projections, Lens				
	distortions, Photometric image formation, Lighting, Reflectance and				
	shading, Optics, The digital camera, Sampling and aliasing, Color				
	,Compression Feature-based alignment: D and D feature-based	12			
	alignment, D alignment using least squares, Application: Panography,				
	Iterative algorithms, Robust				
	least squares and RANSAC, D alignment, Pose estimation, Linear				

	algorithms, Iterative algorithms, Application: Augmented reality, Geometric				
	intrinsic calibration, Calibration patterns, Vanishing points, Application:				
	Single view metrology, Rotational motion, Radial distortion				
	Structure from motion : Triangulation, Two-frame structure from motion,				
	Projective (uncalibrated) reconstruction, Self-calibration, Application: View				
	morphing, Factorization, Perspective and projective factorization,				
	Application: Sparse D model extraction, Bundle adjustment, Exploiting				
	sparsity, Application: Match move and augmented reality, Uncertainty and				
	ambiguities, Application: Reconstruction from Internet photos, Constrained				
	structure and motion, Line-based techniques, Plane-based techniques	12			
II	Dense motion estimation : Translational alignment , Hierarchical motion				
	estimation, Fourier-based alignment , Incremental refinement , Parametric				
	motion, Application: Video stabilization, Learned motion models,				
	Splinebased motion, Application: Medical image registration, Optical flow,				
	Multi-frame motion estimation ,Application: Video denoising , Application:				
	Deinterlacing, Layered motion, Application: Frame				
	interpolation, Transparent layers and reflections				
	Image stitching : Motion models, Planar perspective motion, Application:				
	Whiteboard and document scanning, Rotational panoramas, Gap closing,				
	Application: Video summarization and compression, Cylindrical and				
	spherical coordinates, Global alignment, Bundle adjustment, Parallax				
	removal, Recognizing panoramas, Direct vs feature-based alignment,				
	Compositing , Choosing a compositing surface, Pixel selection and weighting				
	(de-ghosting), Application: Photomontage, Blending				
	Computational photography : Photometric calibration ,Radiometric				
III	response function ,Noise level estimation ,Vignetting ,Optical blur (spatial				
	response relation , response level estimation , vigneting , optical of (spatial response) estimation , High dynamic range imaging , Tone mapping				
	,Application: Flash photography, Super-resolution and blur removal, Color				
	image demosaicing ,Application: Colorization, Image matting and				
	compositing ,Blue screen matting ,Natural image matting ,Optimization-				
	based matting ,Smoke, shadow, and flash matting ,Video matting ,Texture				
	analysis and synthesis ,Application: Hole filling and in painting ,Application:				
	Non-photorealistic rendering				
	Stereo correspondence				
	Epipolar geometry, Rectification, Plane sweep, Sparse correspondence, D				
	curves and profiles, Dense correspondence, Similarity measures, Local				
	methods, Sub-pixel estimation and uncertainty, Application: Stereo-based				
IV	head tracking, Global optimization, Dynamic programming, Segmentation-	12			
	based techniques, Application: Z-keying and background replacement, Multi-				
	view stereo, Volumetric and D surface reconstruction, Shape from silhouettes				
	3D reconstruction : Shape from X , Shape from shading and photometric				
	stereo, Shape from texture, Shape from focus, Active rangefinding, Range				
	data merging , Application: Digital heritage , Surface representations ,				
	Surface interpolation, Surface simplification, Geometry images, Point-based				
	representations, Volumetric representations, Implicit surfaces and level sets, Model based reconstruction, Architecture, Heads and faces, Application:				
	Facial animation, Whole body modeling and tracking ,Recovering texture				
	maps and albedos, Estimating BRDFs, Application: D photography				
	maps and aroutos, Esumating DRD1's, Application. D photography				

	Image-based rendering : View interpolation, View dependent texture maps,						
	Application: Photo Tourism , Layered depth images, Impostors, sprites, and						
	layers, Light fields and Lumigraphs, Unstructured Lumigraph, Surface light	12					
	fields, Application: Concentric mosaics, Environment mattes, Higher-						
	dimensional light fields, The modeling to rendering continuum, Video-based						
	rendering, Video-based animation, Video textures, Application: Animating						
	pictures, D Video, Application: Video-based walkthroughs						
	Recognition : Object detection, Face detection, Pedestrian detection, Face						
V	recognition, Eigenfaces, Active appearance and D shape models,						
	Application: Personal photo collections, Instance recognition, Geometric						
	alignment, Large databases, Application: Location recognition, Category						
	recognition, Bag of words, Part Based models, Recognition with						
	segmentation, Application: Intelligent photo editing, Context and scene						
	understanding, Learning and large image collections, Application: Image						
	search, Recognition databases and test sets						
Books a	nd References:						
Compute	er Vision: Algorithms and Applications, Richard Szeliski, Springer, 1 st Edition						
E-Books	and Online Learning Material :						
1) <u>h</u>	ttps://onlinecourses.nptel.ac.in/noc19_cs58/preview						
2) <u>h</u>	2) https://nptel.ac.in/courses/108103174						
3) <u>h</u>	ttp://iitk.ac.in/ee/computer-vision-lab						

M.Sc Information Technology Course Code: IT454B Course Name: Computer Vision Practical							
Practical per week(1 periods							
is 60 minutes)							
02	01	PR-50 Marks					
List of Practicals							
 Basic I/O scripts ,Reading/writing an image file ,Converting between an image and raw bytes ,Accessing image data with numpy.array ,Reading/writing a video file ,Capturing camera frames, Displaying images in a window, Displaying camera frames in a window Processing Images with OpenCV 3 							
 Converting between different color spaces, The Fourier Transform, High pass filter, Low pass filter, 3) Edge detection with Canny, Contour detection, Contours – bounding box, minimum area rectangle, and minimum enclosing circle ,Contours – convex contours and the Douglas-Peucker algorithm ,Line and circle detection 							
	rames from a depth camera Crupth estimation with a normal c	eating a mask from a disparity map camera					
5) Object segmentation using the Watershed and GrabCut algorithms Example of foreground detection with GrabCut Image segmentation with the Watershed algorithm							
6) Detecting and Recognizing Faces Conceptualizing Haar cascades Getting Haar cascade data Using OpenCV to perform face detection Performing face detection on a still image							
 7) Performing face detection on video Performing face recognition Generating the data for face recognition Recognizing faces Preparing the training data Loading the data and recognizing faces Performing an Eigenfaces recognition 							

8)Retrieving Images and Searching Using Image Descriptors, Feature detection algorithms, Defining features Detecting features – corners Feature extraction and description using DoG and SIFT Anatomy of a keypoint

9) Detecting and Recognizing Objects Object detection and recognition techniques HOG descriptors The scale issue The location issue Non-maximum (or non-maxima) suppression Support vector machines People detection

10)Creating and training an object detector Bag-of-words BOW in computer vision Detecting cars in a scene

M.Sc Information Technology Course Code: IT455 Course Name: Internship						
Practical per week(1	No. of Credits	Evaluation System				
periods is 60 minutes)						
	04	PR-100 Marks				

Objective:

Internships are educational and career development opportunities, providing practical experience in a field or discipline. They are structured, short-term, supervised placements often focused around particular tasks or projects with defined timescales. An internship may be compensated, non-compensated or some time may be paid. The internship has to be meaningful and mutually beneficial to the intern and the organization. It is important that the objectives and the activities of the internship program are clearly defined and understood. Following are the intended objectives of internship training:

- Will expose Technical students to the industrial environment, which cannot be simulated in the classroom and hence creating competent professionals for the industry.
- Provide possible opportunities to learn, understand and sharpen the real time technical / managerial skills required at the job.
- Exposure to the current technological developments relevant to the subject area of training.
- Experience gained from the "Industrial Internship" in classroom will be used in classroom discussions.

• Create conditions conducive to quest for knowledge and its applicability on the job.

Learning Outcomes:

- An opportunity to get hired by the Industry/ organization.
- Practical experience in an organizational setting.
- Excellent opportunity to see how the theoretical aspects learned in classes are integrated into the practical world. On-floor experience provides much more professional experience which is often worth more than classroom teaching.
- Opportunity to learn new skills and supplement knowledge.
- Opportunity to practice communication and teamwork skills.

• Opportunity to learn strategies like time management, multi-tasking etc in an industrial

Every student is required to prepare a file containing documentary proofs of the activities done by him. The evaluation of these activities will be done by Programmed Head/Cell In-charge/ Project Head/ TPO/ faculty mentor or Industry Supervisor